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We consider a system of Newtonian particles, with a long-range repulsive pair 
potential, moving in a cavity whose surface temperature is spatially varying. 
When a particle hits the surface, it is "thermalized" at the temperature of the 
collision point. We prove that this system has a unique stationary ensemble, to 
which any initial distribution converges for large times. We show that this 
stationary ensemble depends continuously on the surface temperature profile. 

KEY WORDS: Nonequilibrium steady state; Newtonian Markov process; 
stationary probability measure; heat flow. 

1. I N T R O D U C T I O N  

An outstanding problem in nonequilibrium statistical mechanics is that of 
finding a canonical description, analogous to that provided by the Gibbs 
state for equilibrium, for steady state nonequilibrium phenomena, such as 
the steady state heat flow produced when the walls confining a gas are 
maintained at different temperatures/7 m) The simplest way to classically 
model such a gas is by requiring that whenever a particle hits a wall its 
velocity is "thermalized" according to the temperature of the wall at the 
point of collision. In this paper we establish the existence and uniqueness of 
a stationary microscopic state for such a system. We are, however, very far 
from the sort of understanding of this state which would be required to 
attain a canonical description of the steady state. 

t Department of Mathematics, Rutgers University, New Brunswick, New Jersey. 
2 Centre de Math6matiques Appliqu6es, Ecole Polytechnique, 91128 Palaiseau Cedex, France. 
3 Dipartimento di Matematica, Universita dell'Aquila, L'Aquila, Italy. 

915 

0022-4715/85/1200-0915504.50/0 �9 1985 Plenum Publishing Corporation 



916 Goldstein, Kipnis, and laniro 

We consider a system of N particles of unit mass moving inside a 
bounded region A c N3 according to the Hamiltonian equations 

l qi "= Pi 
pi = - ~ grad ~U(lqj-qi]), 

j ~ i  

i = 1  ..... N (1.1) 

where U(r), r~>0, describes a spherically symmetric repulsive smooth 
potential; more precisely, U is a C 2 function, U ' (0 )=  0, and U'(r)< 0 for 
r > 0. Each point q of the boundary OA is connected to a reservoir at tem- 
perature T(q). The interaction between particles and wall is described in 
the following way: if (q, p) is the position velocity of the particle before the 
collision with the wall, after the collision it takes a new velocity v which is 
randomly chosen according to the distribution 

Zr p -fl(q) dv 

where n(q) is the inward normal to the boundary at q, fl(q) = 1/KT(q), and 
Z~(q) is a normalizing factor to make the integral of Rfl(q) equal to 1; 1A is 
the indicator function of the set A. 

We thus obtain a Markov process for the evolution of our system. 
Note that if the system is in contact with a thermal reservoir at constant 
temperature T, then the Gibbs state at temperature T is stationary (see 
Appendix). This will, of course, not be true if the temperature varies along 
the boundary. Nontheless, we establish the existence and uniqueness of a 
stationary probability measure and show that any initial distribution con- 
verges to it for large times; we prove also a result on the stability of the 
stationary measure (Theorems 3.1 and 3.2 of Section 3). 

We remark that the state space of the Markov process contains points 
from which the evolution is trivial, namely, points for which all particles 
are coincident with zero speed. There are other configurations in which 
"focusing" occurs and no convergence to equilibrium is possible. The 
previously mentioned theorems refer to the process defined on a subset s 
of (A x N3)N whose complement has vanishing Lebesgue measure. 

We are not able to perform the thermodynamical limit of the unique 
stationary measure when the temperature varies along the boundary: 
unfortunately the techniques used in our proofs do not tell us anything 
about the detailed structure of the stationary state. 

In Ref. 1 the proofs of similar results were sketched, but with 
additional unpleasant conditions. A was assumed to be convex, with a 
smooth boundary, while the temperature was assumed to be continuous 
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along the boundary. Thus, for example, the cases in which A is bounded by 
concentric spheres or is a cube (with, say, opposite walls at different tem- 
peratures) were not covered. 

Our methods do not apply to systems with hard cores. Related results 
for simple systems with hard cores have been obtained in Refs. 2, 3, and 6. 

2. EXISTENCE OF THE PROCESS. DISCRETE T IME SKELETON 

We will first define carefully the process which was described, 
somewhat heuristically, in the previous section. Denote by a configuration 
x a collection of N positions and velocities x =  {(ql, Pl),..., (qN, PN)} 
where for all i qi~A. Set ~Q={x~(Ax~3)N: p ( x ) = Z p i ~ O }  and 
~ =  {xeO: qieOA for some i t  1,..., N and n(qi)'pi>O for all qieOA}. 

We define a Markov kernel P on O by the following: for x eO,  the 
system of the Hamiltonian equations has a unique solution t--, x(t) with 
x ( 0 ) = x .  Because p(x) is not zero, this solution must exit from (A x R3) N. 
Set z = inf{t: x(t) r (A x ~3)N} and set y =  x(z). Suppose that {q~}j= l,...j, 
l ~< N, arc the positions of the particles in the configuration y that are at the 
boundary c~A. Choose now Vl,..., vt independently, according to the law 
Rt~(q i)(dv) and call xl the configuration obtained by replacing the velocities 
of tile partMes at the boundary by the corresponding v's while leaving all 
the other coordinates unchanged. P(x, dxl) is then the distribution of Xl. 
Of course P(x, dxl) is well defined (as a probability Kernel on f2) since for 
all x E~ P(x, s 1 because the law R~(q)(dv) is absolutely continuous 
with respect to dr. 

Given an x0 ~ O the continuous time process is defined in an obvious 
manner from the discrete time skeleton. (Ambiguities can be removed by 
deleting points with n(qi).p~ <~ 0 and by requiring, for instance, right con- 
tinuity of sample paths). In order to check that this process is well defined 
for all times we only need to check that almost surely we have Z z~ = ov if 
r~ are the successive waiting times before collisions. Notice that if Z zs < oe, 
then at least one of the particle of our system must have an infinite number 
of collisions in a finite time. This means that if a~ are the return times to the 
boundary for this particle, we have Z aj < oe. However it is easy to see that 
if the outgoing velocity v satisfies 

(A) v.n(q)>~ 3 and go~<lvl ~<2Ko for some number K o and ]3>0 

then the a that follows this collision is bounded away from zero indepen- 
dently of the hitting point q. Besides, the set (A) of outgoing velocities has 
a probability bounded away from zero uniformly in q. Therefore we have 
that Z aj = oe almost surely. 
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We will denote by Pt(x, dy) the continuous time Markov semigroup of 
this process. 

There is a natural one-to-one correspondence between the invariant 
measure for P on ~ and the invariant measure for Pt on ~. 

This correspondence can be most easily described in terms of a special 
flow representation (4> of the Markov process evolution on ~. Given x ~ f2, 
take the ~ s  such that x belongs to the trajectory of ~ [-i.e., the 
Hamiltonian evolution starting from ~ reaches x before z(~)] and call t(x) 
the time necessary to go from ~ to x. 

Set M =  {(4, t ) ~  x ~+ :0~< t<v(~)} M is naturally isomorphic to 
s Under this isomorphism the evolution on ~2 becomes a flow 
"upwards"away from the base ~ until the ceiling {t=~(~)} is reached, 
followed by a return to the base at a random point via P. A minimal con- 
dition for a measure # to be invariant under this process is that its image 
under the isomorphism be of the form dfi x dt (where dfi is a measure on 
the base g]) but of course this is not sufficient. In fact, we have the 
following: 

Proposition 2.1. (1) # is Pt invariant iff /~ is P invariant; (2) 
fi(d~) T(r < oe iff fl has finite mass. 

However in our case, owing to the form of the stochastic boundary 
reflections, the second condition in always satisfied. 

Proposition 2.2. If fi is a P(x, dy)-invariant probability, it satisfies 

f +(x) ~(dx) < 

Proof. If/~ is P invariant, 

f r(y) ~(dy) = f fi(dx) P(x, dy) r(y) 

But, of course z(y) ~< N Ldiam A[/lp(y)], where p(y) is the total momentum 
of the configuration y. We may assume that y is such that particle "1" is on 
the boundary, i.e., that y={(ql ,  v), (q2, P2),.",(qN, PN)} SO that 
p(y) = ~N iPi + V. Provided the temperature at the boundary is bounded 
below and above, the function defined on N6, (q, v) ~ f(q, v)= 
Zp(q 1) lv. ,  >or " n exp[ -fl(q)(tv[ 2/2)] is bounded, so that 
f(q,v)(1/[Zpi+v[)dv is bounded uniformly in Y~pi and therefore 
S P(x, dy) z(y) is bounded uniformly in x. | 
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3. M A I N  R E S U L T S  

Theorem 3.1. Suppose that A is a closed region of ~3 such that /1  
is connected and the boundary OA is a finite disjoint union of C2-compact 
manifolds and that there exist two strictly positive, finite constants a and b 
such that a ~</?(q) ~< b for all q ~ ~?A. Then there exists ~ unique, nontrivial 
invariant probability measure/~a for the Markov process Pt defined above. 
Moreover, this unique invariant probability measure is equivalent to the 
Lebesgue measure on the state space of the process (A x N3)N and any 
probability measure on (A x N3)N converges in variation norm to/~p under 
the time evolution. 

Theorem 3.2. The unique invariant measure /~ associated to a 
given temperature profile /~ at the boundary depends continuously in 
variation norm on/~. 

To prove Theorems 3.1 and 3.2, we need Theorems 3.3 and 3.4 below 
that we will prove in the next section. We note that by Proposition 2.1 it is 
enough to prove that the process at the collisions has a unique invariant 
probability measure. 

Defini t ion (Strong Doeblin condition). We will say that a Markov 
kernel P(x, dy) satisfies the strong Doeblin condition (SD) iff there exist a 
nontrivial measure v(dy) and an integer n such that for all x s f ~  

Pn(x, dy) >i v(dy) 

In this case, we say that P is v-SD. 

Theorem 3.3. There exist an integer n, a constant ~ > 0 and a set 
A c ~ of strictly positive Lebesgue measure, such that for all x ~ s 

P~(x, dy) >~ 31A(y) dy 

Moreover the set A is independent of the temperature profile on the boun- 
dary and 3 depends only on a and b. 

Remark. In the previous theorem dy is the product of the surface 
area measure for the position of the particle on OA and the Lebesgue 
measure for the other coordinates. (The set of configurations in ~ which 
has more than one particle in ~A, has zero dy measure). 

We also need a result on the continuous time process. 
Let Pt be the transition probability for the continuous time process. 

For e a c h ,  > 0 let Pm, be the Markov chain obtained observing the process 
only at times t = rm. 
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Theorem 3.4. For  each ~ > 0, Pm: is an ergodic, aperiodic Harris 
chain. 

Proof of Theorem 3.1. Theorem 3.1 follows from Theorems 3.3 and 
3.4. More precisely it follows from the three following propositions. 

Proposit ion 3.5. If P is v-SD then (a) there exists a unique 
invariant probability measure/2~ for P, and (b) for any probability measure 

on ~ we have 

II ~PK -/~all ~< 2[1 - v(f~)] r~ 

where y > 0 and II II denotes the variation norm of the measure. 

Proof. Both (a) and (b) follow from the fact that if 51 and ~2 are two 
probability measures on f~, then 

Proposit ion 3.6. For any probability measure rt on f2 we have 

LlrcP,-/~II ~ 0 as t ~ o e  

Proof. Proposition 3.6 follows immediately from Theorem 2.4. 

Proposit ion 3.7. For  any temperature profile, the invariant 
probability measure is equivalent to the Lebesgue measure 2 on (f2 x R3) N 
provided there exist a and b such that 0 < a ~</~(q) ~< b < oe. 

Proof. Note first, via the correspondence between/~ and/] ,  that/~ is 
equivalent to the Lebesgue measure on ~ iff/2 is equivalent to the Lebesgue 
measure on ~. Moreover we know that the Gibbs state 7~ at temperature 
T= 1/ka is invariant for the evolution Po with boundary temperature T 
(Appendix); hence if A is a subset of the phase space of Lebesgue measure 
zero, then ya(A)= 0 and 

0 = 7~ (A)=f  7a(dx) Po(x, dy) 1A(y) 

Hence Po(x, A ) =  0 almost everywhere and consequently the same is 
true of P(x, A). This proves that P transforms any measure absolutely con- 
tinuous with respect to the Lebesgue measure into a measure also 
absolutely continuous. Now take the invariant measure # for P and decom- 
pose it in/21 +/22, where/21 _t_ ~[ and/i2 ~ ~[. Since/2 =/21 +/~2 = (/21 +/22) P 
we see that/21 must also be invariant. On the other hand the density can- 
not vanish on a set of strictly positive Lebesgue measure: If A is the set on 
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which the density is positive, 72( . )= 7a(. ~ A) is invariant for P0. Applying 
Proposition 3.5 to Po, for which we know that 7~ is invariant, we see that 
~[(Q\A) = 0. I 

Proof o f  Thoorom 3.2. For any fl: ~?A --* [a, bJ denote by P~(~, @) 
the associated Markov kernel and by/~r its invariant probability measure. 
For any fixed ~ in f) 

p ,  t - , 

By Theorem 3.3, 6 is independent of the profile fl and the first and the 
third terms are small for n large enough. On the other hand we have that 
for n large enough 

If J sup II ~ - P ~ t l  <~n dfi~ I]PaK-P~[I +~ 

Besides if ~ is a configuration in which only one particle is on the 
boundary at position q 

exp[ -- fl K( q )( IV] 2/2 ) ] exp[ - fl(q)( ]v[2) ] 
IIP~-P~II  = f  v .n  1~.,>o dv 

ZflK(q ) Zfl(q) 

~< C IH~(q) -/~(q)l 

So when {ilK} converges in (Lebesgue) measure to fl, f i~ ~ fi~ in variation 
norm. I 

Romork. The previous result implies that the invariant measure #~ 
for the continuous time process depends continuously, in variation norm, 
on  ft. 

4. PROOFS OF T H E O R E M S  3.3 A N D  3.4 

4.1. Sketch of the Proof  

We first give the outline of the p r o o f .  There are three basic 
ingredients: 

(1) For free motion (U = 0) the conclusion of Theorem 3.3 is easy to 
establish in two steps: 

There exists a point t/o ~ ~,  a neighborhood A of qo, and an open set A 
such that (a) for any q e A ,  p2N(r], d~)>/6lA(~)d ~ and (b) for any initial 
point ~ ~ ~, the process evolves into A with a probability and in a time for 
which we have bounds that are uniform in ~. 
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(2) If the speeds of the particles are sufficiently large, the motion is 
well approximated by free motion. Therefore in view of (1), it will suffice to 
show the following. 

(3) From any initial point ~ e ~ ,  the process evolves into the set on 
which all speeds are "fast" with a probability and in a time (i.e., number of 
collisions) for which we have bounds that are uniform in 4. 

In making the above precise, we proceed as follows: We first establish 
(2) via some approximation lemmas which imply that the actual motion is 
sufficiently well approximated by free motion provided the speeds are large 
enough. This is done by comparing the free motion with the rescaled actual 
motion. The time is rescaled in such a way that velocities of order unity, 
under the rescaled motion, correspond to large velocities in the original 
motion. The key to this comparison is that the rescaling greatly diminishes 
the strength of the interaction between particles. 

We then establish (1), (a) above not only for free motion, but also for 
the actual motion, as long as the speeds are sufficiently large. Later in the 
proof we will explain how we prove (3) and (1), (b) both for free and 
actual motion. 

4.2. The  Rescaled M o t i o n  

The rescaling we exploit arises from the change of time variables 
t ~ ~t, where 2 should be regarded as small. We must consider the rescaled 
motion of a single particle, with position in A c ~3, and the rescaled 
motion of our system of particles, with position in AN= ~3N. TO handle 
both cases simultaneously, consider any motion t ~ q ( t )  e ~M;  M = 1, 2 .... 

Then the motion q~ rescaled by )~ is given by 

q~(t)  = q()vt) (4.1) 

If q( t )  satisfies 
@ 
-~--- p 

@ 
d~ = F(q, t) 

(4.2) 

then q~(t)  satisfies 
dq2 
dt = P ~  

dn 
-~___Z = ,~2F(q~ ' 20 
dt  

(4.3) 
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where 
px(t) = 2p(2, t) (4.4) 

Thus under the 2 rescaling, if F =  F(q), the vector field X(q, p) = (p, F(q)) 
is transformed into the vector field X~(q, p) = (p, ,~2F(q)). Note that if X is 
cg~, then X~ is cgl in (q, p, 2). 

4.3. Approximation Laminas 

Suppose (q(t), p(t))is a solution of (4.2), with F(q, t ) -F( t )  depending 
explicitly only on t in a continuous manner. We wish to compare the 2- 
rescaled motion (q;.(t),p~(t)) defined by (4.3) with the free motion 
(qo(t), po(t)) given by (4.3) with 2 = 0 starting from the same initial point 
(~, ~). 

In the following, 11.11 refers to the Euclidian norm and IIFII~ = 
supo.<,< ~ IIF(t)ll. 

L o m m a  4.1. (i) Ilpx(t)-po(t)ll ~<22 Ilfll~ t, (ii) Hqa(t)-qo(t)l I 
(22/2) I/Foo It t2. 

The lemma follows immediately from the integral form of Proof. 
(4.3) 

q;.(t) = p;.(s) ds 

;o p~(t)=2 2 F(2s) ds | 

Let Jr be a submanifold of NM of dimension M -  1; zx, the hitting 
time for J#, is given by 

z~=inf{t>O:q;.(t)~JC/}, 2>_,0 

L e m m a  4.2. Suppose that c] ~ ~g,/5 is transverse to o~ at q, Zo < 
and po(Zo) is transverse to Jr at qo(%). Then the mapping 
2 ~ (qa(z~), p;.(z~), -c~.) is continuous at 2 = 0. 

ProoL By Lemma 4.1 for 2 sufficiently small, q~(zz), the point of 
return to Jr is near qo(%) and the lemma thus follows easily. | 

Remark. We will use Lemmas 4.1 and 4.2 primarily for the case 
M = 3  with J g c ~ A .  

Suppose now that (q~(t), p;.(t)) is a solution of (4.3) with F =  F(q~) a 
cg~ function. Let ~(2, q, p, t) be the solution map: 

~(,~, 0,P, t)= (q~(t), p~(t)) 

822/41/5-6-13 
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Lemma 4.3. The map q5 is (~l. 

Proof. Let ( ( t ) =  (2, q(t), p(t)). Then ~(t) is a solution of d~/dt= 
(0, p, 2~Hq)) if (q(t), p(t)) satisfies (4.2). Since the vector field on the right 
is cg~, it follows from the usual theorem on ODE's  that ((t), and hence 
(q(t), p(t)), depends in a ~ l  manner on t and the initial conditions 
2, ,~, ~. | 

Now let Jg  be a submanifold of ~=M of dimension 2 M -  1, let ~ be 
the hitting time of ~ and let ~ be the return map on J/{ defined on the 
domain/5  of initial points (2, q, p) with ~ = (q, p) ~ ~ ' ,  X~(~) transverse to 
Jg at 4, and X~.(4~,(~)) transverse to ~ at 4~(~). 

Writing z(2, 4) = r~ ( ~  depends upon the initial point 4), ~ is given by 

&(,l, 4) = ~(,~, ~, r(,~, ~)) (4.5) 

Lemma 4.4. The map ~ is ~ .  

Proof. By (4.5) and Lemma 4.3 it will suffice to show that T(2, 4) is 
cg~. We may assume that there exists a real-valued function f :  RM ~ ~ non- 
singular (i.e., df# 0) on Jr such that 

Jr  {~E R=M: f (4 )  = 0} 

Let J7(2, 4, t)=f(qS(2, ~, t)). jTis cg~. 
Note that r~ satisfies ~7(2, 4, ~ )  = 0. Moreover, by the continuity in 2 

and t of ~a(t) and the smoothness of Xa(~) in fl and 4, it follows from the 
transversality at the initial point and at ~.(~.) that ~x(z~,) is continuous in 
2. In fact, for any ~ > 0 

ql4x(t)- 4~,(t)ll ~ IX;.(4;.(s))-X~,(~x,(s))l ds<<.e for t <  1 

and 2 close to 2'. (This precludes return to Jr small t.) By the transver- 
sality at ~(z;.), we have that #jT/#t=#f/#4d4/dtr at the point 
(2,4, z(2,~)). Hence, by the implicit function theorem, r is a r 
function I 

We now focus on the system of interest. Thus M = 3 N  and 
F =  -Zi,j-,i~j grad U(qi- qj). 

Recall that g'~={(E(Ax~3)N: ~'.piT~O} and that s is the set of 
points 4 e g? for which at least one particle is in 0A and all particles in 0A 
have position and velocity (q, p) satisfying n(q)" p > 0. Let ~o be the set of 
points ~ e ~ for which exactly one particle is in OA. If the ith particle is in 
#A one writes (q0, Po) for its phase coordinates. 
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~0 is a submanifold of ~ of dimension M - 1 .  Let q~ and ~ be 
defined as before, with J r  We are interested in ~ only on 
the domain O ~ c / 3 ,  where D ~ = { ( 2 , 4 ) ~ [ O ,  oo]x i2o:n(qo) 'po>O,  
n(qo(za))" po(z;) # 0}. ra is defined as z; = inf{t: qo(t) E OA }, so this means 
that there is no multiple collision. By Lemma 4.4 ~ is cgl on D~. 

Remark. At time ~;., the particle in 0A may be different from the par- 
ticle in 3A at t = 0. 

We now define maps which take into account random "reflections" 
from 0A. 

Let V=  (vl,..., v,) e ~3, describe the velocities with which the particles 
leave 0A in successive collisions. A suitable choice of V determines the 
motion up to the time of the nth collision with 0A. We wish to regard the 
first collision as occurring at t = 0. Let ~0 be the set which describe only 
the position of the particle at the boundary (and not its velocity) as well as 
the position and velocity of the N - 1  remaining particles. We therefore 
define the projection 

7~: ~'~O ~ ~0  

Let 0: D~ c ~  0 x ~3 be the corresponding injection: ~ is defined on 
the set D~,of points (4, v) with 4 ~ ~0 and n(qo(4)).v > 0 and tp(4, v) is the 
point in Q0 for which the particle at the boundary has phase coordinates 
(%(4), v) and all the other particles are described by the remaining coor- 
dinates of 4. Clearly ~ and ~ are cg~. We define by induction 

(~, : D,  ~ [0, oQ ] x ~o • ~3, ~ Qo as follows: 

r 4, vl) = ~(4, vl) on the domain D I =  [0, c~ ] • D~ 

r 4, vl, v2) = ~(~(~(2, ~1(2, 4, Vm))), v2) on the domain 

D 2 = {(2, 4, v~, v2): (2, 4,/)1) e D , ,  ()., q~l( )-, ~, Vl)) e D~: 

and (u(~(2, r 4, vl))), v2)eDv} 

Cn( ")z, 4, UI,-'-, Un--I, [ . )  = ~/(~(~(1~, Cn--1( ")', 4, /)1 ..... Un--1))), On) 

on the domain 

D , =  { ()., ~, vl ,...,v,):(;t,4,vl ..... v , _ l ) e D , _ l , ( 2 , r  ..... v ,_ l ) )eD~ 

and (~z(~(2, ~,_1(2, ~, vl,..., v ,_ l )  ) ), v,) ~ D~ } 

fiemark. D,  is the domain on which the phase point 4j after the j th  
collision is such that (2, 4~) e D~, j = 1,..., n - 1, and 4, e ~o c~ ~. 

By induction, we have as an immediate consequence of Lemma 4.4: 
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Lemma 4.5. The map ~. is ~ on D..  II 

We also need a continuous time version of r Let 

~.(~,  ~, v, ..... v~ t)=(~(.~, r ~, v~ ..... v.), ( t - ~ ~  

where v, is the time of the nth collision. 
L e t / ~ , =  {(2, ~, v~,..., v,, t ) e D , •  [0, ~ ] :  t > ~ , }  We easily obtain the 

following: 

Lemma 4.6. The map ~, is cs on /~ , .  

Remark. By the continuity of the map ~b,, the D,'s are open. 
We will apply Lemmas 4.5 and 4.6 to the case n = 2N. 

4.4. Jacobian Estimates and Absolute  Cont inu i ty  

We will establish the existence of a nonempty open set A c ~o, a non- 
empty open set A = Go, and a 6 > 0 such that 

H2U(~/,d~)>~lA(~)d~ for all ~/~A 

where H is a Markov kernel on Go. (The P and the H are related in an 
obvious manner.) We do this by establishing a similar result for the 
rescaled motion. For this purpose, let ~/o be a point of ~o such that there 
exists a choice Vo=(V~ ~ ..... V~ON))=(Uo, Vo), Uo=(U~O),...,U~)), V0 = 
(V~ ~ ..... V~)) for which (0, ~/o, Vo)EDaN and each particle collides with 0A 
exactly twice under the motion arising from Vo starting from ~/o with the 
ith particle at OA at the /th and the N +  ith collision. Since D2N is open, 
there exists an open set 

J V - - g o • 2 1 5  

satisfying (0, ~/o, Vo) e Y = D2N. 
By shrinking Go, A, and 0Vo, if necessary, we may assume that the 

closure of J~ c D2N , and that it is compact. We assume that Y has been 
chosen small enough so that the ith particle is on c~A at the ith and the 
N + ith collision for all (2, ~/, V) ~ J~. Since the Nth particle must "spread" 
in only 2 N - 1  dimensions, we write UN = (aN, p) in spherical coordinates 
and U<N~ ), p~O)); (TN=bIN/IUN[ is a point on the unit sphere and 
p- - luu l .  

Set V =  (ul,..., UN-1, aN, Vl,..., VN), SO that V= (V, p) and write 

,~(,L, p, ,~, ~') = '~=u(,t, '1, V) 
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We may assume that OVo = (gpo x (gp~o~ in the (P', p) coordinates, and that 
= (gpo is an open disk. By Lemma 4.6 �9 is @ on 

�9 ~ = go x Cp~o) x z1 x 

Define q~ap..: q / ~  ~ . p , ~ -  ~b~,p,.(~ for 2e~o,  peO/o~, and t/ez~ by 

We wish to estimate the normalized Jacobian determinant JLp,,(~') of 
~ 2,p,r/�9 

By this we mean the following. ~ and { P'} have natural geometrical 
measures: d~, "Lebesgue measure," on ~ and dUl ..... dUN_ 1, daN, dr1 ..... dvN 
for { ~'}, where dau is the solid angle measure (surface area of the unit 
sphere). 

Similarly for any funtion described in coordinates x ~ y  by 
y,(x~,..., Xm), i= 1,..., m the normalized Jacobian J(y; x) = O(y~,..., Ym)/ 
O(x~ ..... Xm) satisfies dy =J ( y ;  x)dx ,  where dy and dx are the measures 
geometrically appropriate to the coordinates. Jap,, satisfies 

d{ = J~.o.,(V) dV for ~ = q~..o.,(V) 

Since ~;.,p,, is a c~1 map depending continuously on 2, p, t/, it follows 
that J~,o,~(V) is a continuous function of 2,p,t/,~'. We estimate it by 
perturbing around 2 = 0 .  Let q~o=~bo,p~%,0, let SJo=~'o,p~0~,0, and 
Jo -- J0,~l%.0. 

Lemma 4.7. qSo: ~ / ~  d o is a (c~J) diffeomorphism. Moreover there 
exist constants cl, c2, 0 < c 1 <  o% 0 < c 2 <  oo such that 

Cl ~< Jo(V) ~< c2 for all Pe 

Proof. It is obvious that q5 o is a ~ bijection. It remains to compute 
the Jacobian. For this purpose we will sometimes use "special flow" coor- 
dinates for a point (q, p) ~ A x ~3 

(q,p)*-~(~,s,p) where ~ec?A,s>O, and q = ~ + s p  

We will use "spherical coordinates" to describe ui = (ai, Pi). We wish 
to compute the normalized Jacobian determinant J(ql,..., ~U, Pl ..... PN; 
Ul,..., UN--1, aN, Vl ..... VN) for the map ~o. Under 4~o, (~]N, PN) depends 
only upon (aN, VN), while (qi, P~) depends only on (ug, v~) i =  1 ..... N - 1  
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and o n  (O'N, 1.)N). Therefore  Jo is upper  block tr iangular ,  with blocks 
corresponding to the particles, so that  

and 

N 
Jo = 1~ J(o i) where J(oi)= j(qi ,  pi; ui, vi), i = I , . . . , N - 1  

i=1 

J(o N) = J(~N, PN; (IN, VN) 

But, since (q .  pi)~-~(~i, Si, p~) and (u~)~--~(o-~, p~) i =  1 ..... N -  1, we 
have that  p~ = v~, i = 1 ..... N, ~ depends only on o-~, and s~ depends only on 

(ai, Pi) (as well as on aN). 
Thus,  for i = 1 ..... N -  1: 

and 

dqi dpi  = Pi" n( ~i) d~i dsi dpi = J(o i) d~li dl)i 

j(i)  = Vi. n(~i ) ~ . aPi aui 

Let ~ be the posi t ion the ith particle at the first of its two collisions 

with 0A. Then  

3 

and dui = p~dai dpi. 
We thus obta in  that  

and similarly 

ap, p~ 

j ( f f )=  v ~ - n ( ~ )  . Iqi~,l  4 
i = 1  ..... N - - 1  

I~N~NI 3 J(o N) _ | 
ON N 

Lemma 4.8. There  exist open sets A', (9~o), and (90 with r/o �9 A' c 
p~O) �9 (9'p/0)c (gplOl and 0 �9 (90 C (~o such that  ~,o,~" ~ / /~  sC~.,p,, is a dif- 
f eomorph ism for all 2 �9 (9o, P �9 (9'p~o~, and  q �9 A'. There exists a constant  C, 
0 < C < oe such tha t  

J~,p,,(V) <~ C (4.6) 



Stationary States and Stochastic Boundary Conditions 929 

t ! f for all 2e(9o, p e(gp~o~, t / e a ,  and Pe~//. Moreover d ,  defined as the 
I interior of the intersection for 2 e (90, t /e A', p e (gp<0~ of aCa.p,,, is nonempty. 

Proof. Since ~, is g* on Y ,  for every g > 0  there exist open sets 
/ ! 

A', (gp~Ol and (90 with % e d '  c A, p(O) e (9~<o~ c (gp{o~, 0 e (9o c (~o such that for 
t 

2 e ( 9 0 ,  p e (g p(o) , a n d  t /eA'  

sup lqsa.o,,(V) - q~o( V)[ < e (4.7) 
Pe~, 

and 

sup = < a 

where II 
two Jacobian matrices). From (4.8) and Lemma 4.7, it follows that for 
sufficiently small N '  is nonempty, since ~ff' contains all points of ~r at a 
distance greater than e from the boundary of ~r | 

Now choose any 2o e (90 and let ~ = ~//2o, A = A'/2 o Opr = (9~o)/2o, 
sg=sg ' /2o .  Here "/2o indicates scaling the velocities by 20; e.g., 
d = {(q, p/2o): (q, p) e d ' } .  For any p e (~p~o~ and t /s  A let /~, ,  be the image 
under q~ ,~ , (2= l  corresponds to the actual unscaled motion) of the 
measure dV on ~ .  

(4.8) 

[I denotes the supt [ over all matrix elements (of the difference of 

L e m m a  4.9. For all p e (~p~o~ and t/e A 

1 
I~p,,(d~) >1 C23(N_ ~--~ 1 ~,(~) d~ 

where C is as in Lemma 4.8. 

Proof. This is an immediate consequence of Lemma 4.8 and the fact 
that ~bl,p/ao,,/).o (~') = q~Xo.p,,(2o if')/2 o for all p e (9'p~o~, t/e A', and ~'s ys. | 

For t/e A let #, be the image under the map V= (~', p ) - ,  #l,p,~ V) of 
the measure dV(dV= p2d~'dp) on the set, in ~', p coordinates, Y/~ x (gp~o~. 

L e m m a  4.10. For all t /eA 

o- ~.(d~) > ~  1~,(~) d~ 

_ _  3 2 where 0 < a = ~o'r p2 dp - 2 0 ~oplol p dp. 

Proof: 

= ~pflo~ p2 do #p,~. | 
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L e m m a  4.11. There exists a 3 > 0  such that 

/F~(q, d~)/> 6 1~(~) d~ (4.9) 

for all ~/~ A. 

Proof. Let 7 1  = sup{[ V]: )~o Ve 0v0} < ~ and 7z = (1/2o) inf{ Vi" n(~i): 
i= 1 ..... 2N, qEA',  V~(gvo }, where Oi is the position of the particle at OA 
after the ith collision. Note that 72 is strictly positive. Then (4.9) follows 
from Lemma 4.10 by taking into account the expression for R/~(q); we 
obtain (4.9) with 6 = ~3~)2N~~ 

4.5. C o m p l e t i o n  of  the  Proo f  

Recall now that A was constructed as a small neighborhood of a point 
qo ~ t~o provided this point satisfied a certain number of conditions which 
involve only the free motion and are therefore purely geometrical in nature. 
(These conditions in particular enable us to construct also the set A and to 
compute 6.) 

We will prove in Lemma 5.1 the existence of a point qo ~ (?A such that 
the surface near qo looks like a "piece of sphere." From this, we can con- 
struct an ~/o that satisfies our assumptions as follows: because of the 
properties of 3A at qo, we know that the surface near qo is close to the 
osculating ellipsoid at qo so that there exist at least two points ~ and ~ of 
(?A such that the segments c]q o and ~qo are contained in A and the tangent 
planes at t], q0, and ~ are transverse to the directions qqo or ~qo. We then 
set the positions of the particles in t/o as (qo, ql,.--, qN- 1) with all qi's on the 
segment t]qo; we also take for common direction of the velocities 
( u~ ..... u ~  the direction c]q o and choose the speeds so that the order of 
the collisions is the one prescribed for t/o. The direction of (v ~ ..... v~  is 
chosen equal to qo~ and the speeds similarly adjusted. 

Now 'it remains to prove steps (3) and (1), (b) of Section 4.1 for the 
actual as well as free motion. We proceed as follows: we prove (3), i.e., that 
for any K there exist an integer n and an ~ > 0 such that for every ~ ~ f2 
pn(~, Jt~x) > ~, where JFK is the set of configurations of f2 for which all par- 
ticles have velocity larger than K. 

Then we prove that there exist an integer rn and an ~ > 0 such that for 
every ~ ~ o'(f K, pm(~, A)>~.  

Lemmas 4.12, 4.13, and 4.14 below imply this last proposition and 
Lemma 4.15 completes step (3). In the proofs the reader should bear in 
mind the approximation lemmas. 

Let N~ be a small enough neighborhood of ~ obtained by looking at 
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all points q of A such that n(~l).q<~n(gt).~t+e for e small enough. 
Moreover let F be the set of points 4 ~ Go such that for all i qie N~ and if 
q; r 3A then n(gt)'pi < 0 and [p~[ >/s We have the following: 

L e m m a  4.12. Suppose that there exist an integer M and a constant 
cq such that for all configurations 4o ~ Go there exists an integer m(40) such 
that H'~~ o, F)>~ ~1. Then for a certain constant ~ > 0 and for all 40 ~ sO 

PM+ N(4 0, ~) >f ~ (4.10) 

Proof. Of course, the problem is to have exactly M +  N collisions, 
since to end up in A one needs only to aim at qo with correct velocities. To 
get the desired number of collisions, send the particle hitting at the 
[m(~0)]th collision to and fro between ~ and qo until it has made the 
necessary number of collisions. The condition on the curvature at c] allows 
us to avoid any problem of periodicity. Also choose the velocities after the 
extra collision of this last particle to be so large that the real time necessary 
to perform these collisions is so small that the first particles hardly 
moved. | -  

Defin~ for K3 large enough ~c~ to be the set of configuration ~ e sO 
such that the velocities of all particles that are not on c?A is larger than K 3. 
Then, provided/s is large enough, we have the following. 

I . e mma  4.13. Suppose that there exist an integer ~r and an c~ 2 > 0 
such that for all 4 e ~ 0  there exists an rn0(4)~<214 for which 
Hm~ ~ e2. Then there exist an integer M and a~ > 0 such that for 
an m(4) ~< M 

/r/m(~)(~, / , )  ~> 0~ 1 (4.11) 

Proof. Recall that to be in F a configuration must fulfill the 
following conditions: 

n(g]).q~<,n(O).~+e , i = l . . . N  (4.12a) 

and 
n(~]).p~<0, IP,]/>K2, if qi(~OA (4.12b) 

It is easy to fulfill (4.12) by shooting the particles from any "good point" 
(see definition in Section 5), for instance, from qo, with large enough 
velocities. However to fulfill (4.12a) it is sufficient to restrict these velocities 
to a range [K2, K;]  so that the delay between the first and the last particle 
is controlled, provided all the particles start from qo at almost the same 
moment. It is indeed enough to know that, given a neighborhood of q0, 
under approximate free motion a particle goes from any point of the boun- 



932 Goldstein, Kipnis, and laniro 

dary to this neighborhood in a bounded number v of collisions with 
uniformly bounded below probability (Lemma 5.3). Indeed the claim 
follows by imposing on each particle a velocity large than K4 and the total 
delay at qo is less than 2(L/K 4 + L/K3). (L is the width of the box,) 

It now remains to prove that our system evolves into a set in which all 
particles are fast in a time and with a probability which are uniform in ~. 

We will first set some notations (see Fig. 1): 
1. Choose a unit vector u for which Lemma 4.1 holds. Call q~ 

(resp. qm) the corresponding point of OA which realizes SUpq~a A u ' q  (resp. 
infq~aA u 'q)  and R the distance qMqm. 

2. For Z>U'qm define 

and 

A~= { q ~ A : u . q >  2} 

3. For u" qm < V < 11 < U" qM define 

S~,v= {q6 A: v <~ u" q<<.#} 

= {q~OA: v<~q" u<<.#} 
IZ , V 

We further restrict # and v to be close enough to U'qm SO that Z,,~ 
does not contain any point of an inner boundary. 

4. For any 2 > U'qm define the function 

N 

q~(q) = ~ (u. q i -  Z) 1A~(qi) 
i = 1  

A X 

qM 

Figure 1 
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Notice that until a particle in A~ hits the wall this function is con- 
tinuous under the mechanical motion, and moreover its right derivative in 
time exists and is equal to ~0~(q, p ) = ~  p i ' u  la~(qi). 

It has a finite number of positive jumps, since particles leaving and 
entering A~ contribute a nonnegative quantity. 

In each of the intervals between the jumps, the function ~p~. itself has a 
derivative equal to 

( q j -  qi)' u 
~ =  -- ~ lA~(q')lA~(qAU'(lqi--qJ]) I q j - q i l  

i ~ j  

This fimction is nonnegative and if we define for 2 > # 

(q2 - ql) '  U 
~(2, #)---- inf ] U ' ( l q z - q ~ [ ) l  

ql ~ A~,q2~A2 Iq2 -- ql ] 

which is strictly positive by the long-range assumption, a lower bound for 
this function ~] is 

~(2, # ) [ ~  1A~(q~)ll ~ lA~(qz) ] 

Therefore if we force the fast particle to remain in A~, ~b~, satisfies 

q~.(t) >~ ~b~.(0) + ~p).(0) t + ~(2,/~) t2/2 

until a collision occurs in A~ or all the particles leave A~. Besides note that 
the function ~bj. must remain smaller than N ( R -  2) (otherwise one of the 
particles would be outside our region). In this sense (R - 2) N is the critical 
value for ~b~. 

L e m m a  4.14. For all # and v close enough to U'qm , every T > 0 ,  
and all k4, there exist an integer g and an ~3 > 0 such that if a particle is 
colliding in 5Z,,v at time 0, then the probability that it will remain in S#,v  
up to time T, having less than ~ collisions and keeping a velocity larger 
than k4, is larger than ~3. 

Proof .  By choosing # and v close enough to u.  qm, we can ensure by 
Lemma 5.1 that ~ , ~  looks like a "slice of sphere." 

From any point of Y.,.v, we can therefore "aim" at Zu,~. By choosing 
the direction a of the post collision velocity at site q in the cone u" n(q)  >>. 7 
for any given 7 > 0 and the speed p between two constants k5 and k 6 large 
enough, we bound away uniformly from zero the time it takes before the 
next recollision of this fast particle while uniformly controlling the 
probability of these events. | 
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We observe now that because Y, pe ~ 0, one particle will hit the boun- 
dary in a finite time (that we do not control). We have the following: 

L o m m a  4.15. For any given k4, there exist an integer n and an 
a4 > 0, such that for any configuration r ~ t20, the probability that at a 
collision before the nth collision all the particles have velocity larger than 
k4 is larger that a4. 

Proof. The proof will be by induction on the number of fast particles 
one can create. Of course the probability that the particle initially at 0A 
bounces off with a velocity larger than a given k5 is bounded away from 
zero independently of the hitting place. We will now explain how a particle 
should move, according to the state of the system, to create another 
collision. For this purpose, we define 

u i  = 

= { r  

= 

= 

q~;.(q) > 0, 0;~(~) ~> 0} 

~p).(q) >0 ,  (pz(~) ~< - K }  

~o~(q) > 0, -R~< Ox(~) < 0} 

~0~(q) =0}  

and we will choose R such that a particle with initial velocity KIN will 
travel a distance at least R in the direction of its initial velocity against any 
force applied to it by the other ( N - 1 )  particles. In this case the time 
needed to travel this far is bounded. We will now take v < # < )~, and these 
values will be fixed later. When the first particle to collide hits the boun- 
dary we take it to ~,,v using Lemma 5.3. 

If no collision (of another particle) occurred by this time, compute ~0;. 
and ~O~ at the moment when the fast particle first hits Z~,v. 

If we are in U~, then by the remark following the definition of q~ and 
~h;., use Lemma 4.14 to keep the fast particle in S,,~. By doing so we will 
have a collision in A;. before the time necessary for ~0~ to reach its critical 
value (which is bounded). Thus the number of collisions of the fast particle 
is bounded and the probability is uniformly bounded away from zero. 

If we are in U~ 2, then at least one particle has a velocity p such that 
u.p <~ -K/N, so that also another collision must occur. 

If we are in U~, then after a fixed time determined by R (provided we 
keep the fast particle in S,,v)0x must be nonnegative unless another par- 
ticle collided. Therefore we end up either in U1 ~ or in U]. 

We therefore only need to consider the case when the configuration is 
in U~, which means that all the particles are in A~. At this point compute 
k;. such that if a particle has velocity p satisfying u. p ~> k~, independently 
of its position in A~ and against any force applied to it by the ( N -  1) other 
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particles it will enter A~. The time t~. needed for that to happen is bounded. 
It is easy to see that both ka and t~ tend to zero as 2 tends to U'qm. 

If one of the particles (different form the fast one) satisfies u. p ~> k~. 
then we end up in U~'. 

Now if all the slow particles satisfy u'p<~k~, we will define new 
functions q5 and 4} analogous to rp and ~ but constructed near qM, instead 
of near qm" For p close to u'qM 

and 

Bp= {qeA:  u 'q< .p}  

N 

(op(q) = y" (p - u 'q,)  lu~(qi) 
i = 1  

so that the critical value for this function is now ( N - 1 ) ( p -  U'qm ). Its 
value is initially larger than ( N - 1 ) ( p - 2 ) ,  which is close to the critical 
value, and by moving rapidly the fast particle to B~, we do not much alter 
this initial value. Besides, q)p is larger than - ( N - 1 ) k a  and is also only 
slightly perturbed by the time the fast particle gets to B~. 

Of course we might be in a situation of the type U2 for (~, but we will 
argue now that by an appropriate choice of 2 we cannot end up in U4. The 
reason for this is that because all the particles are close to qm and have 
small velocities, the time necessary (in the worst possible case) for a par- 
ticle to escape from Bp is bounded below, while the time necessary for qsp 
to reach its critical value tends to zero as 2 tends to u" qm" This proves the 
lemma. | 

Lemmas 4.15, 4.14, 4.13, 4.12, and 4.11 imply Theorem 3.3, in view of 
the obvious relation between H and P. 

Let H, be the continuous time kernel on 0 0. Then by an argument 
very similar to the proof of Lemma 4.11, using Lemma 4.6 and letting (q, t) 
play the role previously played by ~/, we obtain the following. 

L e m m a  4.16. There exist a time to, an interval Io around to, a 
nonempty open set A c g2o, and a g > 0 such that 

,q,(~, a4) > 61a(r ar 

for all ~/e A, t e I 0. Here d~ is the usual Lebesgue measure o n  ~6N.  

Proof of Theorem 3.4. Lemmas 4.15, 4.14, 4.13, 4.12, and 4.16 imply 
Theorem 3.4, in view of the obvious relation between H and P. | 
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5. G E O M E T R I C A L  L E M M A S  

We used in the proof of Lemma 4.14 that there exists a direction u 
such that if qM (resp. qm) denotes the point of OA which realizes the 
supremum of u '  q for q s OA (resp. the infimum), there exists a "stripe" S~,v 
for all # and v close enough to u'qm but different from the supremum of 
u'q (resp. the infimum), such that a particle can bounce to and fro inside 
this stripe. 

Of course if we can find a direction u such that at both qM and qm the 
quadratic forms appearing in the Taylor expansion of the surface at these 
points are nondegenerate, the planes tangent to the surface at a point of a 
neighborhood of both qM and qm are close to the planes tangent to the 
osculating ellipsoid. The existence of such a direction is proved in 
Lemma 5.1 below. 

k e m m a  5.1. Let 0A be a finite disjoint union of cg2-compact sub- 
manifolds of R3. Then for almost all directions u the surface at qM and qm 
is nondegenerate. 

Proof. The problem is local so by taking an open covering of 0A we 
can consider that our surface is given by an application F: ~2 ...+ ~3  Con- 
sider now the subset A of ~2• R3 of those (x, u) such that the tangent 
plane to ~?A at F(x) is orthogonal to u. This is a c~ submanifold of ~5 of 
dimension 3, a parametrization of which is given by 
~o: (x, 2) ~ R2 x R ~ [x, 2n(F(x))]. Of course for any direction u of ~3, the 
points (F-l(qM),u) and (F-l(qm),U) belong to this submanifold. 
Introduce now the application re: A ~ R 2 which is the restriction to A of 
the canonical projection of R2x ~3 on ~3 and note that z~oq) is an 
application from ~3___+ ~3 which is of maximal rank if and only if 

o (p: (a, b, 2) ~ (a, b, 2n(F(a, b))) is such that [n(F(a, b)), On/c3a, c~n/Ob] 
have a nonvanishing determinant. An easy computation shows that this 
last condition is equivalent to the quadratic form at F(x) being non- 
degenerate. Since rc o q~ is cgl, it follows from Sard's Lemma (5) that the set of 
directions for which the quadratic form at qM or qm is degenerate has zero 
Lebesgue measure. | 

Let A be as in the assumptions of Theorem 3.1. Define an admissible 
trajectory from x to y (both in ~A) as a path contained in A that links x to 
y, made of straight lines inside z] and changing direction only at the points 
on ~A, but such that at a point on OA both the incoming and the outgoing 
directions are not tangential to OA. An outgoing direction which is not 
tangential will be called a good direction. 



Stationary States and Stochastic Boundary Conditions 937 

Lernma 5.2. For every pair of points x and y in OA there exists an 
admissible trajectory linking x to y. 

Proof. We introduce the following relation: x g ~ y ~ x  is linked to y 
by an admissible trajectory. Of course x ~ y  if and only if y ~ x  and also xYty 
and y ~ z  imply x~z .  We want to prove x ~ x  (which is not obvious since 
constant trajectories are not admissible). Now by Sard's lemma, there 
exists a point z on the boundary such that the line 22 is in A and the direc- 
tion xz  is good for both x and z. We therefore have x ~ z  and z ~ x  hence 
x~ x .  So ~ is an equivalence relation. Besides it is easy to see that if x ~ y  
then for all y '  close enough to y we also have x~y ' .  Indeed take an 
admissible trajectory from x to y and by slightly perturbing the last good 
direction we can reach any point in a neighborhood of y. Since ~ is an 
equivalence relation we see that any connected component of the boundary 
is either made of points all ~ equivalent to a given Xo or that no point of 
this component is ~ equivalent to Xo. It remains to prove that the second 
case cannot occur if ~ is connected. We will prove that the equivalence 
class (denoted by C1) of the outer boundary is all 0A. Argue by contradic- 
tion and assume that C2 is the union of all the equivalence classes different 
from C1. Take any direction u and define m as the point of C2 such that 
u . x  is maximized at m when x varies in C2. Look now at the half-space 
H =  {y~ ~3: u" Yo>U.m}. Because A is connected the intersection of this 
half-space with A must contain Hc~ {y: Jly-m]] ~e}  for a small e. (This 
means that A c is around m at the left of m and not at the right of it; 
otherwise there would be another point in the same connected component 
containing m further to the right.) Therefore the point m satisfies m ~ z  at 
least on z of C~. This proves that C2 is empty. 

Consider now the stochastic motion of a single particle, initially at 
x s~A,  defined by the probability kernel N~(q~(dv) and the force 
F=--F(t, x, Vo, v~ .... ): the particle leaves x = X o  with velocity Vo and moves 
under the influence of F until it again reaches ~A, at X~, where it acquires a 
new velocity vl with distribution ~(x~)(dv), and so on. Suppose that if the 
( m + l ) t h  collision with ~A has not yet occurred by time t then F(t,...) 
depends only upon x and v l ..... Vm. 

Let 2 = ( N 3 ) ~ =  {~=(Vo, V~,...)}. For  given x and F a point ~ e Z  
determines a trajectory and the process starting from x with force F may 
thus be realized on the space (& pF) with F P~ a probability measure on 2. 

For  ~=(Vo, v~,..~)~- =, let ~ = ( V o  ..... v~). The motion up to the 
(n + 1)th collision is determined by x, F, and ~ and thus Xj=  Xj(/~. x, v) 

j =  0 ..... n + 1 are well-defined for all v = (v~ ,..., v~) ~ (N3),. We call (F, x, v) 
acceptable if vg. n(X~) > 0 for all i = 0,..., n. 

With I[FH = supt.~,r IF(t, x, ~)[ we have the following. 
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Lemma 5.3. Suppose that A satisfies the conditions of Theorem 
3.1. Then for every open set (9 c ~?A there exists an integer N <  0% an e > 0, 
and c~ > 0 such that 

F Px{~13n<~N such that X , e ( 9 }  >>.a 

provided IIFII < e. 

ProoL The proof is based on a compactness argument. From 
Lemma 5.2 it follows that given x e 0A, there exists a sequence of points 
x = x o, x~,..., X,(xl such that x,(x)e C and all the directions x~x~+~ are good 
for both xe and x~+~. Therefore there exists an e = e ( x ) > 0  and sets 
U~, Vo ..... V~(~), where Ux is a neighborhood of x on OA and Vi ~ ~3 is a 
neighborhood of x~x~+x/llxexe+~tl such that for every ( y ,v ) e  
U~x Vo x . . . x  V~(x), (F, y, v) is acceptable and X,(F, y, v)e (9 provided 
IIFII < e(x). It follows that there exists an ~(x)> 0 such that for all y e q/~ 

pF{~eZ]~,(x)  e V ox ""  • V,(x) } >~a(x) 

provided IIFI] < e(x). Since Ux is an open covering of OA (which is com- 
pact) we can extract a finite subcovering, and the lemma follows. 

APPENDIX 

Let 7~ the Gibbs measure at temperature T =  1/K a. First, we note that 
the projection 7, of 7~ on Oo is absolutely continuous with respect to d~, 
~ f]0, with density proportional to the usual Gibbs factor multiplied by 
n(qo)'Po (see the special flow representation, Section 2) Thus writing 
~=  (~, Po), ( e  (A x ~ 3 ) N -  1 X 0A ~Ta is of the form 

%(of() = vo(d() R.(dpo) 

for some measure v,. It follows that 

%R~ 

Moreover, since ~a is preserved by the Hamiltonian flow on f2, given 
by (1.1) together with elastic reflection from 0A, it follows that ~a T = ffa, 

where r is the return map for this flow regarded as a stochastic kernel 
[~(~, dr/) = 6~(dr/) the unit measure at ~ ] .  Since P = rR ,  [i.e., e(~, dr/) = 
~,, ~(~, dr/') Ra(r/', dr/)] it follows that 

~] a P  = ('~a T ) R a  = ~/ a R a  : ff a 
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